Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.684
Filtrar
1.
Rom J Morphol Embryol ; 65(1): 45-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527983

RESUMO

BACKGROUND: Matrix metalloproteinase (MMP)1, MMP9, MMP11, and MMP13 are overexpressed in malignant melanoma (MM), being associated with tumor invasive phase, metastases, and more aggressive neoplastic phenotypes. AIM: The main objective of the current study was to correlate the expression of the MMPs with the evolution of MM toward distant metastasis. PATIENTS, MATERIALS AND METHODS: We designed a retrospective cohort study, including 13 patients with metastatic MM. Data concerning age, sex, localization of the primary lesion and metastasis, and histological and immunohistochemical features (intensity of expression and percent of positive cells for MMPs) were statistically processed. RESULTS: The time between the diagnosis of primitive melanoma and the diagnosis of metastasis ranged between 0 and 73 months, with a mean value of 18.3 months. The metastases rich in MMP1- and MMP9-positive cells occurred earlier than the metastases with low levels of positive cells. The mean period until metastasis was shorter for the MMP1-expressing tumors than the ones without MMP1 expression. MMP13 expression in the tumor and its metastasis was significantly linked with the time until the metastasis occurrence. CONCLUSIONS: This study emphasizes the roles of MMP1, MMP9, and MMP13 in the process of metastasis in melanoma and the opportunity to use them as therapeutic targets and surveillance molecules.


Assuntos
Metaloproteinase 13 da Matriz , Metaloproteinase 1 da Matriz , Metaloproteinase 9 da Matriz , Melanoma , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 11 da Matriz/genética , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/genética , Melanoma/metabolismo , Estudos Retrospectivos
2.
Curr Eye Res ; 49(5): 524-532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305219

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a major cause of irreversible blindness in the working-age population. Neovascularization is an important hallmark of advanced DR. There is evidence that Yes-associated protein (YAP)/transcriptional co-activator with a PDZ binding domain (TAZ) plays an important role in angiogenesis and that its activity is regulated by vascular endothelial growth factor (VEGF). Therefore, the aim of this study was to investigate the effect of YAP/TAZ-VEGF crosstalk on the angiogenic capacity of human retinal microvascular endothelial cells (hRECs) in a high-glucose environment. METHODS: The expression of YAP and TAZ of hRECs under normal conditions, hypertonic conditions and high glucose were observed. YAP overexpression (OE-YAP), YAP silencing (sh-YAP), VEGF overexpression (OE-VEGF) and VEGF silencing (sh-VEGF) plasmids were constructed. Cell counting kit-8 assay was performed to detect cells proliferation ability, transwell assay to detect cells migration ability, and tube formation assay to detect tube formation ability. The protein expression of YAP, TAZ, VEGF, matrix metalloproteinase (MMP)-8, MMP-13, vessel endothelium (VE)-cadherin and alpha smooth muscle actin (α-SMA) was measured by western blot. RESULTS: The proliferation of hRECs was significantly higher in the high glucose group compared with the normal group, as well as the protein expression of YAP and TAZ (p < 0.01). YAP and VEGF promoted the proliferation, migration and tube formation of hRECs in the high glucose environment (p < 0.01), and increased the expression of TAZ, VEGF, MMP-8, MMP-13 and α-SMA while reducing the expression of VE-cadherin (p < 0.01). Knockdown of YAP effectively reversed the above promoting effects of OE-VEGF (p < 0.01) and overexpression of YAP significantly reversed the inhibition effects of sh-VEGF on above cell function (p < 0.01). CONCLUSION: In a high-glucose environment, YAP/TAZ can significantly promote the proliferation, migration and tube formation ability of hRECs, and the mechanism may be related to the regulation of VEGF expression.


Assuntos
Retinopatia Diabética , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Células Endoteliais/metabolismo , 60489 , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células , Glucose/farmacologia , Glucose/metabolismo
3.
Life Sci ; 343: 122536, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423170

RESUMO

AIMS: The main pathological features of osteoarthritis (OA) include the degeneration of articular cartilage and a decrease in matrix synthesis. Chondrocytes, which contribute to matrix synthesis, play a crucial role in the development of OA. Liquiritin, an effective ingredient extracted from Glycyrrhiza uralensis Fisch., has been used for over 1000 years to treat OA. This study aims to investigate the impact of liquiritin on OA and its underlying mechanism. MATERIALS AND METHODS: Gait and hot plate tests assessed mouse behavior, while Micro-CT and ABH/OG staining observed joint morphological changes. The TUNEL kit detected chondrocyte apoptosis. Western blot and immunofluorescence techniques determined the expression levels of cartilage metabolism markers COL2 and MMP13, as well as apoptosis markers caspase3, bcl2, P53, and PUMA. KEGG analysis and molecular docking technology were used to verify the relationship between liquiritin and P53. KEY FINDINGS: Liquiritin alleviated pain sensitivity and improved gait impairment in OA mice. Additionally, we found that liquiritin could increase COL2 levels and decrease MMP13 levels both in vivo and in vitro. Importantly, liquiritin reduced chondrocyte apoptosis induced by OA, through decreased expression of caspase3 expression and increased expression of bcl2 expression. Molecular docking revealed a strong binding affinity between liquiritin and P53. Both in vivo and in vitro studies demonstrated that liquiritin suppressed the expression of P53 and PUMA in cartilage. SIGNIFICANCE: This indicated that liquiritin may alleviate OA progression by inhibiting the P53/PUMA signaling pathway, suggesting that liquiritin is a potential strategy for the treatment of OA.


Assuntos
Cartilagem Articular , Flavanonas , Glucosídeos , Osteoartrite , Animais , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Flavanonas/farmacologia , Glucosídeos/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
4.
J Hypertens ; 42(4): 685-693, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406874

RESUMO

BACKGROUND: Endothelial nitric oxide synthase (NOS3) elicits atheroprotection by preventing extracellular matrix (ECM) proteolytic degradation through inhibition of extracellular matrix metalloproteinase inducer (EMMPRIN) and collagenase MMP-13 by still unknown mechanisms. METHODS: C57BL/6 mice lacking ApoE , NOS3, and/or MMP13 were fed with a high-fat diet for 6 weeks. Entire aortas were extracted and frozen to analyze protein and nucleic acid expression. Atherosclerotic plaques were detected by ultrasound imaging, Oil Red O (ORO) staining, and Western Blot. RNA-seq and RT-qPCR were performed to evaluate EMMPRIN, MMP-9, and EMMPRIN-targeting miRNAs. Mouse aortic endothelial cells (MAEC) were incubated to assess the role of active MMP-13 over MMP-9. One-way ANOVA or Kruskal-Wallis tests were performed to determine statistical differences. RESULTS: Lack of NOS3 in ApoE null mice fed with a high-fat diet increased severe plaque accumulation, vessel wall widening, and high mortality, along with EMMPRIN-induced expression by upregulation of miRNAs 46a-5p and 486-5p. However, knocking out MMP-13 in ApoE/NOS3 -deficient mice was sufficient to prevent mortality (66.6 vs. 26.6%), plaque progression (23.1 vs. 8.8%), and MMP-9 expression, as confirmed in murine aortic endothelial cell (MAEC) cultures, in which MMP-9 was upregulated by incubation with active recombinant MMP-13, suggesting MMP-9 as a new target of MMP-13 in atherosclerosis. CONCLUSION: We describe a novel mechanism by which the absence of NOS3 may worsen atherosclerosis through EMMPRIN-induced ECM proteolytic degradation by targeting the expression of miRNAs 146a-5p and 485-5p. Focusing on NOS3 regulation of ECM degradation could be a promising approach in the management of atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Camundongos , Metaloproteinase 13 da Matriz/metabolismo , Basigina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , MicroRNAs/metabolismo , Apolipoproteínas E/genética
5.
Zhonghua Yi Xue Za Zhi ; 104(9): 695-703, 2024 Mar 05.
Artigo em Chinês | MEDLINE | ID: mdl-38418169

RESUMO

Objective: To explore the mechanism of cross-linked hyaluronic acid-dexamethasone hydrogel (cHA-Dex) in inhibiting chondrocyte apoptosis and alleviating early post-traumatic osteoarthritis (PTOA). Methods: To generate PTOA model, anterior cruciate ligament transection (ACLT)was performed on SD rats (n=70), and the sham surgery group (n=70) was set as control. The changes in inflammatory indicators such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-13 (MMP-13) in the joint lavage fluid were measured at different time points (1-14 days, 5 rats at each time point) after surgery. The cHA-Dex (0.5 mg/ml) hydrogel (experimental group, n=70) and ordinary low-molecular-weight hyaluronic acid (HA) hydrogel premixed with Dex, that was, HA-Dex (0.5 mg/ml) hydrogel (control group, n=70) were injected into the joint cavity of PTOA rats, and the release amount and cumulative release amount of Dex in the joint fluid of rats at each time point(1-14 days, 5 rats at each time point) were detected to reveal the release mechanism of cHA-Dex hydrogel. The cartilage of knee joint of patients with osteoarthritis (OA) who underwent knee arthroplasty in the Second Hospital of Shanxi Medical University from January 2020 to December 2022 was taken for in vitro tissue block culture (Outbridge score=1 or 2,n=18). After the cartilage tissue block was treated with cHA-Dex hydrogel premixed with 0.1, 0.2, and 0.5 mg/ml Dex, the mRNA expression levels of IL-1ß, IL-6, TNF-α, MMP-3, and MMP-13 in the articular cartilage tissue block were detected. OA chondrocytes were isolated from cartilage samples using enzymatic hydrolysis and cultured in vitro (n=18). Chondrocytes were divided into 4 groups: saline, cHA hydrogel, Dex (0.5 mg/ml), and cHA-Dex (0.5 mg/ml) hydrogel group. The effects of different interventions on chondrocyte proliferation and apoptosis were tested. Results: The Osteoarthritis Research Society International (OARSI) score of safranine O-solid green staining in PTOA group was 3.34±0.35, and it was 1.17±0.21 in Sham group(P=0.010). The Meachim score of knee joint osteophytes in PTOA rats was significantly higher than that in the Sham group (2.66±0.41 vs 0.22±0.17, P=0.010), indicating PTOA model in rat was established successfully. The cHA-Dex hydrogel, which corresponded to the peak changes of inflammatory factors in the joints of PTOA rats in the early stage, was also released in the early stage and sustained-released in the late stage. After the OA articular cartilage tissue block was treated with cHA-Dex hydrogel premixed with 0.1, 0.2, and 0.5 mg/ml Dex, the mRNA expression levels of IL-1 ß, IL-6, TNF-α, MMP-3, and MMP-13 in the tissue block were reduced significantly (all P<0.05) and in a dose-dependent manner. Compared with Dex (0.5 mg/ml) alone group, the apoptosis rate of cHA-Dex (0.5 mg/ml) hydrogel group was significantly reduced (0.60±0.07 vs 6.63±0.98, P=0.010).Compared with the normal saline or the cHA hydrogel alone group, the cHA-Dex (0.5 mg/ml) hydrogel group had significant cell proliferation, and the difference at each time point were all significant statistically (all P<0.05). Conclusion: For the early inflammation of PTOA, cHA-Dex hydrogel can not only inhibit cartilage inflammation, but also reverse the increased apoptosis and decreased proliferation rate of chondrocytes caused by Dex, and finally alleviate the progress of PTOA by releasing Dex.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , Ácido Hialurônico/farmacologia , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Inflamação , Condrócitos , Dexametasona/farmacologia , Hidrogéis/farmacologia , RNA Mensageiro
6.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338721

RESUMO

We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and ß-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1ß in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1ß, as well as the nuclear translocation of NF-κB and ß-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of ß-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.


Assuntos
Cartilagem Articular , Osteoartrite , Tanquirases , Humanos , beta Catenina/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Estresse Mecânico , Tanquirases/antagonistas & inibidores
7.
Mol Carcinog ; 63(4): 714-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251858

RESUMO

The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms. Knockdown of mH2A2 facilitated the migration and invasion of breast cancer cells, whereas its overexpression exhibited the opposite effect. In vivo experiments revealed that augmenting mH2A2 expression reduced tumor growth and lung metastasis. Microarray analysis showed that TM4SF1 emerged as a likely target linked to mH2A2 owing to its significant suppression in breast cancer cell lines where mH2A2 was overexpressed among the genes that exhibited over twofold upregulation upon mH2A2 knockdown. Suppressing TM4SF1 reduced the migration, invasion, tumor growth, and metastasis of breast cancer cells in vitro and in vivo. TM4SF1 depletion reversed the increased aggressiveness triggered by mH2A2 knockdown, suggesting a close interplay between mH2A2 and TM4SF1. Our findings also highlight the role of the mH2A2/TM4SF1 axis in activating the AKT/NF-κB pathway. Consequently, activated NF-κB signaling leads to increased expression and secretion of MMP13, a potent promoter of metastasis. In summary, we propose that the orchestrated regulation of the mH2A2/TM4SF1 axis in conjunction with the AKT/NF-κB pathway and the subsequent elevation in MMP13 expression constitute pivotal factors governing the malignancy of breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/genética , NF-kappa B/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/metabolismo , Epigênese Genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/fisiologia , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 108-118, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293982

RESUMO

OBJECTIVE: To investigate the mechanism that mediates the inhibitory effect of Xinfeng Capsule (XFC) on interleukin (IL)-1ß-induced impairment of chondrocytes. METHODS: XFC-medicated serum was collected from SD rats with XFC gavage, and its optimal concentration for chondrocyte treatment was determined using Cell Counting Kit-8 assay and flow cytometry. Dual luciferase reporter analysis was performed to analyze the targeting relationship between miR-502-5p and TRAF2. In cultured human chondrocytes induced with IL-1ß, the effects of transfection with miR-502-5p inhibitor and XFC-medicated serum, alone or in combination, on expression levels of IL-1ß, tumor necrosis factor-α (TNF-α), IL-4, and IL-10 were examined with ELISA, and the changes in the expressions of collagen type Ⅱ alpha 1 (COL2A1), matrix metalloproteinase 13 (MMP13), adisintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and miR-502-5p/TRAF2/NF-κB axis gene expression were detected using RT-qPCR, Western blotting, and immunofluorescence assay. RESULTS: In cultured human chondrocytes, treatment with IL-1ß significantly decreased the cell viability, increased cell apoptosis rate, lowered miR-502-5p, IL-4, IL-10, and COL2A1 expressions, and enhanced IL-1ß, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 expressions (P < 0.05), and these changes were significantly improved by treatment with XFC-medicated serum at the optimal concentration of 20% (P < 0.05). Transfection of the chondrocytes with miR-502-5p inhibitor resulted in elevated expressions of IL-1ß, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 and lowered expressions of miR-502-5p, IL-4, IL-10, and COL2A1, and XFC-medicated serum obviously reversed the effects of miR-502-5p inhibitor. CONCLUSION: XFC can inhibit IL-1ß-induced inflammatory response and ECM degradation in cultured human chondrocytes possibly by regulating the miR-502-5p/TRAF2/NF-κB axis.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , NF-kappa B , Humanos , Animais , Ratos , NF-kappa B/metabolismo , Interleucina-10 , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/farmacologia , Condrócitos/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4/metabolismo , Ratos Sprague-Dawley , Inflamação/metabolismo , Matriz Extracelular/metabolismo
9.
PLoS One ; 19(1): e0290925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166086

RESUMO

BACKGROUND: Articular cartilage and cartilage matrix degradation are key pathological changes occurring in the early stage of knee osteoarthritis (KOA). However, currently, there are limited strategies for early prevention and treatment of KOA. Duhuo Jisheng Decoction (DHJSD) is a formula quoted in Bei Ji Qian jin Yao Fang, which was compiled by Sun Simiao in the Tang Dynasty of China. As a complementary therapy, it is widely used to treat early-stage KOA in China; however, its mechanism has not been completely elucidated. OBJECTIVE: This study investigated the potential role of DHJSD in preventing cartilage degradation and the underlying mechanism. METHODS: A rat model of KOA model was established via the Hulth method. Subsequently, 25 rats were randomized into sham (saline), model control (saline), high-DHJSD (1.9g/mL of DHJSD), medium-DHJSD (1.2g/mL of DHJSD), and low-DHJSD groups (0.6g/mL of DHJSD). After 4 weeks of treatment, all rats were sacrificed and the severity of the cartilage degeneration was evaluated by a series of histological methods. The autophagosome was observed using transmission electron microscopy, and the related functional proteins were detected by the western blotting and real-time polymerase chain reaction. Next, the mechanism by which DHJSD improves knee cartilage degeneration was further clarified the in vitro by gene silencing technology combined with a series of functional experiments. The proteins levels of PTEN, Akt, p-Akt, mTOR, and p-mTOR, as well as the marker proteins of autophagy and apoptosis were determined. Zinc levels in chondrocytes were determined using inductively coupled plasma mass spectrometry. RESULTS: Histopathological staining revealed that DHJSD had a protective effect on the cartilage. DHJSD increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in chondrocytes. Moreover, it reduced the phosphorylation levels of Akt and mTOR and the levels of zinc, MMP-13, Bax, and Bcl-2. Following PTEN silencing, this DHJSD-mediated reduction in Akt and mTOR phosphorylation and Bax, Bcl-2, and zinc levels were further decreased; in addition, DHJSD-mediated increase in LC3 and Beclin-1 levels was decreased. CONCLUSION: DHJSD inhibits the Akt/mTOR signaling pathway by targeting PTEN to promote autophagy in chondrocytes, which may help reduce MMP-13 production by regulating zinc levels in chondrocytes.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Proteína Beclina-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Condrócitos/metabolismo , Osteoartrite do Joelho/patologia , Cartilagem Articular/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Autofagia , Homeostase
10.
Pathol Res Pract ; 253: 155045, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176307

RESUMO

BACKGROUND: Elevated serum levels of MMP-13 are linked to tumor growth and metastasis, while miR-138 dysregulation is observed in breast cancer cases. The aim of this study is to investigate the expression of miR-138 and MMP-13 levels as potential biomarkers for the prognosis of breast cancer. PATIENTS AND METHOD: In this retrospective case-control study, 119 female subjects were recruited and divided into three groups. MMP-13 level was measured using Enzyme Linked Immunosorbent Assay (ELISA), while real-time PCR technique was employed to quantify miR-138 expression. RESULTS: Both non-metastatic and metastatic groups showed significantly higher levels of serum MMP-13 compared to other groups. MMP-13 levels are significantly increased among patients with advanced tumor size, lymph node metastasis, and triple-negative breast cancer cases. An inverse significant association between MMP-13 levels and response to treatment was observed. Expression of miR-138 underwent a significant down-regulation in breast cancer patients, and a statistically significant association was established between miR-138 expression and triple-negative breast cancer cases. A positive association was detected between the increase in miR-138 expression and the good response to treatment. The expression of miR-138 was inversely correlated with the MMP-13 levels. CONCLUSION: MMP-13 levels were significantly higher in breast cancer, especially in advanced cases, suggesting its role in promoting tumor invasion and metastasis. MiR-138 was down-regulated in breast cancer, especially in triple-negative breast cancer patients, rendering it a promising biomarker for triple-negative breast cancer. Modulation of miR-138 expression and MMP-13 levels may represent therapeutic targets for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Prognóstico , Estudos de Casos e Controles , Estudos Retrospectivos , Egito , Metaloproteinase 13 da Matriz/metabolismo , Biomarcadores Tumorais/análise , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 74-81, 2024 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-38225845

RESUMO

Objective: To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats. Methods: Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 µmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor ß 1 (TGF-ß 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ. Results: The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 µmol/L ( P<0.05), so 4 µmol/L and 8 µmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-ß 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 µmol/L and 8 µmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression. Conclusion: VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.


Assuntos
Condrócitos , Dipeptídeos , Osteoartrite , para-Aminobenzoatos , Ratos , Animais , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Colágeno Tipo II/metabolismo , Interleucina-6 , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Int Immunopharmacol ; 126: 111331, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061116

RESUMO

BACKGROUND: Neuropathic pain significantly impairs quality of life, and effective interventions are limited. NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated microglial pyroptosis and the subsequent proinflammatory cytokine production are critical in exacerbating pain. Considering microglial pyroptosis as a potential target for developing specific analgesic interventions for neuropathic pain, our study investigated the pathogenesis and therapeutic targets in this condition. METHODS: In vitro experiments involved the co-culture of the immortalized BV-2 microglia cell line with lipopolysaccharide (LPS) to induce microglial pyroptosis. Differentially expressed microRNAs (miRNAs) were identified using high-throughput sequencing analysis. The downstream target genes of these miRNAs were determined through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the downstream target genes, combined with miRNAs, were predicted and verified through dual luciferase reporter gene assays. In vivo experiments were conducted to construct a chronic constriction injury (CCI) neuropathic pain model in rats and evaluate the analgesic effects of intrathecal injection of an adeno-associated virus vector (AAV) carrying miR-99b-3p. Gene expression was modulated through mimic or siRNA transfection. Western blot analysis assessed the expression of microglial pyroptosis and autophagy-related proteins, whereas RT-qPCR measured changes in proinflammatory cytokines expression. RESULTS: LPS-stimulated up-regulation of proinflammatory cytokines in microglia, accompanied by NLRP3-dependent pyroptosis, including increased NLRP3, GSDMD-N, Caspase1-p20, and mature-IL-1ß expression. High-throughput sequencing analysis revealed 16 upregulated and 10 downregulated miRNAs in LPS-stimulated microglia, with miR-99b-3p being the most downregulated. KEGG analysis revealed that the target genes of these miRNAs are primarily enriched in calcium, FoxO, and mitogen-activated protein kinase (MAPK) signal pathways. Furthermore, overexpression of miR-99b-3p through mimic transfection significantly inhibited the inflammatory response and NLRP3-mediated pyroptosis by promoting autophagy levels in activated microglia. In addition, we predicted that the 3' untranslated region (UTR) of matrix metalloproteinase-13 (Mmp13) could bind to miR-99b-3p, and knockdown of Mmp13 expression through siRNA transfection similarly ameliorated enhanced proinflammatory cytokines expression and microglial pyroptosis by enhancing autophagy. In vivo, Mmp13 was co-localized with spinal dorsal horn microglia and was suppressed by intrathecal injection of the AAV-miR-99b-3p vector. Moreover, overpressed miR-99b-3p alleviated CCI-induced mechanical allodynia and neuroinflammation while suppressing pyroptosis by enhancing autophagy in the spinal cord of CCI rats. CONCLUSION: miR-99b-3p exerts analgesic effects on neuropathic pain by targeting Mmp13. These antinociceptive effects are, at least in part, attributed to the promotion of autophagy, thereby inhibiting neuroinflammation and NLRP3-mediated pyroptosis in activated microglia.


Assuntos
MicroRNAs , Neuralgia , Animais , Ratos , Analgésicos , Autofagia , Citocinas/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/metabolismo , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Qualidade de Vida , RNA Interferente Pequeno/metabolismo
13.
J Cell Mol Med ; 28(2): e18054, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009813

RESUMO

This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Ratos , Animais , MicroRNAs/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Efrina-A3 , Agrecanas/genética , Agrecanas/metabolismo , Matriz Extracelular/metabolismo , Apoptose/genética , Colágeno/metabolismo , Disco Intervertebral/metabolismo
14.
Osteoarthritis Cartilage ; 32(1): 28-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37648149

RESUMO

OBJECTIVE: Krüppel-like zinc finger transcription factors (KLFs) play diverse roles in mammalian cell differentiation and development. In this study, we investigated the function of KLF15 in the progression of osteoarthritis (OA). METHODS: 0Destabilization of the medial meniscus (DMM) surgery was performed in 10-week-old male wild-type control (WT) mice and cartilage-specific KLF15 knockout (KO) mice. Histological analysis, immunohistochemistry, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling staining were performed. Morphological changes were measured using microcomputed tomography. Six mice from each group were analyzed (total number of mice analyzed: 60). In vitro, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western blot analyses were performed. RESULTS: KLF15 KO DMM mice exhibited significant cartilage degradation compared to WT mice. According to the Osteoarthritis Research Society International cartilage OA-histopathology scoring system, the mean sum score in KLF15 KO mice was significantly higher than that in WT mice at 8 weeks after surgery. Immunohistochemistry results revealed KLF15 KO mice exhibited reduced peroxisome proliferator-activated receptor gamma (PPARγ) expression, increased pIKKα/ß, a disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTS) 5, and Matrix metalloproteinases (MMP13) expression, and reduced Forkhead box O (FOXO1) and Light chain 3B (LC3B) expression. Inhibition of PPARγ phosphorylation accelerated the effects of interleukin (IL) 1ß-treatment in both KLF15 KO and WT chondrocytes, and activation of PPARγ expression canceled the IL1ß-induced catabolic effects. CONCLUSION: Our results indicated that the OA phenotype of KLF15 KO DMM mice was influenced by reduced PPARγ expression, including enhanced pIKKα/ß, ADAMTS5, and MMP13 expression, reduced autophagy, and increased apoptosis. KLF15 regulation may constitute a possible therapeutic strategy for the treating OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Masculino , Camundongos , Cartilagem Articular/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/farmacologia , Mamíferos/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Knockout , Osteoartrite/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Microtomografia por Raio-X
15.
Cell Biochem Biophys ; 82(1): 259-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129709

RESUMO

Excessive aggressive migration and invasion are important factors that increase the mortality of cancer patients. Matrix metalloproteinase 13 (MMP13) expression is positively correlated with lung cancer malignancy. However, the mechanism underlying an elevated MMP13 expression is not clearly defined. In this study, we demonstrated that hypoxia induced by CoCl2 enhanced the expression of HIF1α, JAK2, STAT3 and MMP13 in A549 cells. A positive correlation between HIF1α and MMP13 expression was observed in lung adenocarcinoma patients. Mechanically, hypoxia upregulated HIF1α/JAK2/STAT3 signal axis, promoted transcription factor STAT3 to bind to MMP13 promoter region, and activated MMP13 transcription, finally promoted cell invasion and migration. However, stattic (STAT3 inhibitor) could reverse this effect caused by STAT3 in A549 cells. Together our data indicated that hypoxia might promote lung cancer cell migration and invasion through the HIF1α/JAK2/STAT3 axis by activating MMP13 transcription. MMP13 could be a promising therapeutic target for lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Hipóxia/metabolismo , Movimento Celular , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Proliferação de Células
16.
Cytokine ; 173: 156436, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979214

RESUMO

Failure of bone healing after fracture often results in nonunion, but the underlying mechanism of nonunion pathogenesis is poorly understood. Herein, we provide evidence to clarify that the inflammatory microenvironment of atrophic nonunion (AN) mice suppresses the expression levels of DNA methyltransferases 2 (DNMT2) and 3A (DNMT3a), preventing the methylation of CpG islands on the promoters of C-terminal binding protein 1/2 (CtBP1/2) and resulting in their overexpression. Increased CtBP1/2 acts as transcriptional corepressors that, along with histone acetyltransferase p300 and Runt-related transcription factor 2 (Runx2), suppress the expression levels of six genes involved in bone healing: BGLAP (bone gamma-carboxyglutamate protein), ALPL (alkaline phosphatase), SPP1 (secreted phosphoprotein 1), COL1A1 (collagen 1a1), IBSP (integrin binding sialoprotein), and MMP13 (matrix metallopeptidase 13). We also observe a similar phenomenon in osteoblast cells treated with proinflammatory cytokines or treated with a DNMT inhibitor (5-azacytidine). Forced expression of DNMT2/3a or blockage of CtBP1/2 with their inhibitors can reverse the expression levels of BGLAP/ALPL/SPP1/COL1A1/IBSP/MMP13 in the presence of proinflammatory cytokines. Administration of CtBP1/2 inhibitors in fractured mice can prevent the incidence of AN. Thus, we demonstrate that the downregulation of bone healing genes dependent on proinflammatory cytokines/DNMT2/3a/CtBP1/2-p300-Runx2 axis signaling plays a critical role in the pathogenesis of AN. Disruption of this signaling may represent a new therapeutic strategy to prevent AN incidence after bone fracture.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Citocinas , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Consolidação da Fratura , Animais , Camundongos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metiltransferases/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Consolidação da Fratura/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo
17.
Hum Exp Toxicol ; 42: 9603271231219480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059300

RESUMO

This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 µM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 µM BGJ398. 1 µM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Osteoartrite , Toxina T-2 , Ratos , Animais , Toxina T-2/toxicidade , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Osteoartrite/metabolismo , Doença de Kashin-Bek/induzido quimicamente
18.
Arthritis Res Ther ; 25(1): 235, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049890

RESUMO

PURPOSE: To identify the role of gluconeogenesis in chondrocytes in osteoarthritis (OA). MATERIALS AND METHODS: Cartilage samples were collected from OA patients and C57 mice and were stained with Safranin O-Fast Green to determine the severity of OA. Periodic acid Schiff staining was used to characterize the contents of polysaccharides and SA-ßGal staining was used to characterize the aging of chondrocytes. Immunohistochemistry and western blotting were used to detect fructose-bisphosphatase1 (FBP1), SOX9, MMP13, P21, and P16 in cartilage or chondrocyte. The mRNA levels of fbp1, mmp13, sox9, colX, and acan were analyzed by qPCR to evaluate the role of FBP1 in chondrocytes. RESULTS: The level of polysaccharides in cartilage was reduced in OA and the expression of FBP1 was also reduced. We treated the chondrocytes with IL-1ß to cause OA in vitro, and then made chondrocytes overexpress FBP1 with plasma. It shows that FBP1 alleviated the degeneration and senescence of chondrocytes in vitro and that it also showed the same effects in vivo experiments. To further understand the mechanism of FBP1, we screened the downstream protein of FBP1 and found that CRB3 was significantly downregulated. And we confirmed that CRB3 suppressed the degeneration and delayed senescence of chondrocytes. CONCLUSIONS: FBP1 promoted the polysaccharide synthesis in cartilage and alleviated the degeneration of cartilage by regulating CRB3, so FBP1 is a potential target in treating OA.


Assuntos
Cartilagem Articular , Frutose-Bifosfatase , Glicoproteínas de Membrana , Osteoartrite , Animais , Humanos , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/metabolismo , Polissacarídeos/metabolismo , Frutose-Bifosfatase/metabolismo , Glicoproteínas de Membrana/metabolismo
19.
J Orthop Surg Res ; 18(1): 817, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907921

RESUMO

PURPOSE: Temporomandibular joint osteoarthritis (TMJOA) is a common disease that negatively affects the life quality of human beings. Circadian rhythm acts an important role in life activities. However, whether the clock genes are rhythmic expressed in mandibular condylar chondrocytes, or the clock genes have an effect on the progression of TMJOA remains unknown. In this study, we aim to explore expression of clock genes and regulatory mechanism of TMJOA in rat mandibular condylar chondrocytes. METHODS: After synchronized by dexamethasone, the expression of core clock genes Per1, Per2, Clock, Cry1, Cry2 and Bmal1 and cartilage matrix degrading factor gene Mmp13 were analyzed in mandibular condylar chondrocytes every 4 h with RT-qPCR. The mandibular condylar chondrocytes were stimulated with IL-1ß, and expression of Per1, Mmp13, P65 and p-P65 was assessed by RT-qPCR and Western blot. Sh-Per1 lentivirus was used to assess the effect of clock gene Per1 in IL-1ß-induced chondrocytes, and expression of Mmp13, P65 and p-P65 was measured. After establishing a rat TMJOA model using unilateral anterior crossbite (UAC), micro-CT, H & E, Alcian Blue & Nuclear Fast Red and Safranin O & Fast Green, cartilage thickness was utilized to assess the damage of cartilage and subchondral bone. Immunohistochemistry of PER1, MMP13 and P65 was performed in condylar sections. RESULTS: All core clock genes and Mmp13 were rhythmically expressed. And Mmp13 expression curve was closed in phase and amplitude with Per1. After stimulation with IL-1ß, the expression of MMP13, PER1 and P65 and ratio of p-P65/P65 increased in condylar chondrocytes. After Per1 was down-regulated in condylar chondrocytes, the expression of MMP13 and P65 and ratio of p-P65/P65 decreased. Compared with the condyles of Sham group, the bony parameters of UAC group were significantly worse. The thickness of cartilage in UAC group significantly reduced. The modified Mankin scores and the expression of PER1, MMP13 and P65 in cartilage of UAC group significantly increased compared with Sham group. CONCLUSION: Core clock genes and Mmp13 are rhythmic expressed in rat mandibular condylar chondrocytes. PER1 can regulate the expression of MMP13 through NF-κB pathway in IL-1ß-induced mandibular condylar chondrocytes.


Assuntos
NF-kappa B , Osteoartrite , Animais , Ratos , Condrócitos/metabolismo , Côndilo Mandibular/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Articulação Temporomandibular/metabolismo
20.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003658

RESUMO

Osteoarthritis (OA) is a complex disease of whole joints with progressive cartilage matrix degradation and chondrocyte transformation. The inflammatory features of OA are reflected in increased synovial levels of IL-1ß, IL-6 and VEGF, higher levels of TLR-4 binding plasma proteins and increased expression of IL-15, IL-18, IL-10 and Cox2, in cartilage. Chondrocytes in OA undergo hypertrophic and senescent transition; in these states, the expression of Sox-9, Acan and Col2a1 is suppressed, whereas the expression of RunX2, HIF-2α and MMP-13 is significantly increased. NF-kB, which triggers many pro-inflammatory cytokines, works with BMP, Wnt and HIF-2α to link hypertrophy and inflammation. Altered carbohydrate metabolism and the upregulation of GLUT-1 contribute to the formation of end-glycation products that trigger inflammation via the RAGE pathway. In addition, a glycolytic shift, increased rates of oxidative phosphorylation and mitochondrial dysfunction generate reactive oxygen species with deleterious effects. An important surveyor mechanism, the YAP/TAZ signaling system, controls chondrocyte differentiation, inhibits ageing by protecting the nuclear envelope and suppressing NF-kB, MMP-13 and aggrecanases. The inflammatory microenvironment and synthesis of key matrix components are also controlled by SIRT1 and mTORc. Senescent chondrocytes represent the functional end stage of hypertrophic differentiation and characteristically upregulate p16 and p21, but also a variety of inflammatory cytokines, chemokines and metalloproteinases, developing the senescence-associated secretory phenotype. Senolysis with dendrobin, miR29b-5p and other agents has been shown to be efficient under experimental conditions, and appears to be a promising tool for the treatment of OA, as it restores COL2A1 and aggrecan synthesis, suppressing NF-kB and destructive metalloproteinases.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Hipertrofia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cartilagem Articular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...